Clustering Orders
نویسندگان
چکیده
We propose a method of using clustering techniques to partition a set of orders. We define the term order as a sequence of objects that are sorted according to some property, such as size, preference, or price. These orders are useful for, say, carrying out a sensory survey. We propose a method called the ko’means method, which is a modified version of a k-means method, adjusted to handle orders. We compared our method with the traditional clustering methods, and analyzed its characteristics. We also applied our method to a questionnaire survey data on people’s preferences in types of sushi (a Japanese food).
منابع مشابه
Toshihiro KAMISHIMA and Jun FUJIKI
Clustering Orders START We would like to talk about the method for clustering orders.
متن کاملClustering of a Number of Genes Affecting in Milk Production using Information Theory and Mutual Information
Information theory is a branch of mathematics. Information theory is used in genetic and bioinformatics analyses and can be used for many analyses related to the biological structures and sequences. Bio-computational grouping of genes facilitates genetic analysis, sequencing and structural-based analyses. In this study, after retrieving gene and exon DNA sequences affecting milk yield in dairy ...
متن کاملTensor Sparse and Low-Rank based Submodule Clustering Method for Multi-way Data
A new submodule clustering method via sparse and lowrank representation for multi-way data is proposed in this paper. Instead of reshaping multi-way data into vectors, this method maintains their natural orders to preserve data intrinsic structures, e.g., image data kept as matrices. To implement clustering, the multi-way data, viewed as tensors, are represented by the proposed tensor sparse an...
متن کاملFast&d Intuitive Clustering of Web Documents*
Conventional document retrieval systems (e.g., Alta Vista) return long lists of ranked documents in response to user queries. Recently, document clustering has been put forth as an alternative method of organizing retrieval results (Cutting et al. 1992). A person browsing the clusters can discover patterns that could be overlooked in the traditional presentation. This paper describes two novel ...
متن کاملSearch and clustering orders of magnitude faster than BLAST
MOTIVATION Biological sequence data is accumulating rapidly, motivating the development of improved high-throughput methods for sequence classification. RESULTS UBLAST and USEARCH are new algorithms enabling sensitive local and global search of large sequence databases at exceptionally high speeds. They are often orders of magnitude faster than BLAST in practical applications, though sensitiv...
متن کامل